Length-based allomorphy in Xhosa noun class prefixes

Aaron Braver

Wm. G. Bennett*

LSA 2016

Length-based allomorphy in class 10

- Class 10:
- izi(N)- before 1-syllable roots
- ii(N)- elsewhere

Singular (9)		Plural (10)	Gloss
in-to	[int'o]	izin-to	'thing(s)'
in-dlu	[indlyu]	izin-dlu	'house(s)'
in-dlela	[indlyela]	iin-dlela	'road(s)'
in-tombi	[int'ombi]	iin-tombi	'girl(s)'

Overview

- Certain noun class prefixes in Xhosa (Bantu, Nguni, South Africa) alternate based on the length of the following root
- The Question: are these alternations synchronically productive, or just the remnant of historical change?
- We argue that these alternations are part of speakers' synchronic grammars

Length-based allomorphy in class 5

- Class 5:
- ili- before 1-syllable roots
- i- elsewhere

Singular (5)		Plural (6)	Gloss
ili-fu [ilifu] ama- $\underline{\text { fu }}$	'cloud(s)'		
ili-tye	[ilice]	ama-tye	'stone(s)'
i-cephe	[ilephe]	ama-cephe	'spoon(s)'
i-chada	[idada]	ama-dada	'duck(s)'

Length-based allomorphy in class 11

- Class 11:
- ulu- before 1-syllable roots
- u- elsewhere

Singular (11)	Plural (10)	Gloss
ulu-vo [uluvo]	izim-vo	'opinion(s)'
ulu-su [ulusu]	izin-tsu	'skin(s)'
u-phondo [uphondo]	iim-pondo	'horn(s)'
u-cango [u\|aygo]	iin-gcango	'door(s)'

Possible representations

a. Remnant of a historical process; only in the lexicon (learned for each word)
\longrightarrow Speakers shouldn't apply the pattern to novel words or nonce items
b. Synchronic phonological pattern; active in the grammar (learned as a rule)
\longrightarrow Speakers should apply the pattern to novel words or nonce items

- Other robust cases of length-based allomorphy are mostly metrical in nature
- Ex: Sharanawa (Gonzalez 2005; Faust \& Loos 2002:132)
- (ka-pa)-ni (ke.ne)-(pa.ke)-ni go-down-remote past 'Went down' write-in order-remote past 'Wrote in order' -pake- after even
- The Xhosa case isn't so obviously metrical
- Not iterative; it's about minimality
- Some alternations don't involve moras (iin-/izin-)

Experiment design

- Wug task (Berko 1958)
- Singular \leftrightarrow Plural
- Block 1: ii(N)- vs. izi(N)- (9/sg \rightarrow 10/pl)
- Block 2: i- vs. ili- $\quad(6 / \mathrm{pl} \rightarrow 5 / \mathrm{sg})$

Data capture

- Stimuli presented on a laptop in random order
- Participants saw 3 real-noun sg/pl examples in the instructions, then did 14 practice items
- Audio recorded, responses coded for class prefix added

Participants

- 10 native speakers of isiXhosa
-5 male, 5 female
- Age
- Range: 21-42
- Mean: 26
- Other languages
- English (चall)
- Afrikaans (2)
- Zulu (2)
- Sotho (2)

Block 1 (class 9/sg. \rightarrow 10/pl.): Stimuli

- Singular class $9 \rightarrow$ plural class 10
- 10 monosyllabic roots
- 10 disyllabic roots
- 20 filler/distractor items (part of a separate experiment)
- 10 monosyllabic, 10 disyllabic

Block 1: Task

- Block 1 (9/sg. \rightarrow 10/pl.)
- On each trial, speakers see a singular nonce noun with the class 9 prefix $i(N)$ -
- Speakers produce the plural of that nonce noun, with one of the two class 10 allomorphs, $\mathrm{iz}(\mathrm{N})$ - or ii(N)-

Block 2 (class 6/pl. \rightarrow 5/sg.): Stimuli

- Plural class $6 \rightarrow$ singular class 5
- 10 monosyllabic roots
- 10 disyllabic roots
- distinct from block 1
- 20 filler/distractor items (part of a separate experiment)
- 10 monosyllabic, 10 disyllabic
- distinct from block 1

Block 1 (9/sg. \rightarrow 10/pl.): Examples

- into $\rightarrow \quad$ izinto or iinto
- indlu $\rightarrow \quad$ izindlu or iindlu
- indlela $\rightarrow \quad$ izindlela or iindlela
- intombi $\rightarrow \quad$ izintombi or iintombi

Block 2: Task

- Block 2 (6/pl. \rightarrow 5/sg.)
- On each trial, speakers see a plural nonce noun with the class 6 prefix ama-
- Speakers produce the singular of that nonce noun, with one of the two class 5 allomorphs, ili- or $i-$

Block 2 ($6 / \mathrm{pl} . \rightarrow 5 / \mathrm{sg}$.): Examples

- amafu $\quad \rightarrow \quad$ ilifu or ifu
- amatye $\quad \rightarrow \quad$ ilitye or itye
- amacephe \rightarrow ilicephe or icephe
- amadada \rightarrow ilidada or idada

Results: Block 1 (9/sg. \rightarrow 10/pl.)

- Speakers were more likely to use izi(N)-
with short roots and $\mathrm{ii}(\mathrm{N})$ - with long roots
$\underset{\text { Prefix choice by stem length }}{\text { (Block 1) }}$

(Block 1)

Results

- In both blocks, speakers' knowledge of length-based prefix alternations extends to novel words

The "other" category

- Real class prefixes, but not izi(n)- or ii(n)-
- Most common: ama- (class 6 pl.)
- Two likely reasons for ama- responses
- i-CVCV forms may be ambiguous between class 5 i(li)- and class 9 i(n)-
- Some frequent nouns in class 9 have class 6 plurals (a 9/sg.~6/pl. paradigm exists) ex: in-doda \rightarrow ama-doda 'man' / 'men'

Results: Block 2 (6/pl. \rightarrow 5/sg.)

- Speakers were more likely to use ili- with short roots and i - with long roots
$\underset{\text { Prefix choice by stem length }}{\text { (Block 2) }}$

Statistics

- Linear mixed model regressing prefix choice against root length with participant and item as random effects
- Combined Block 1 and Block 2
- With "other" responses: $t=0.915$, ns.
- Without "other" responses: $t=4.841, p<0.001$
- "Other": responses other than i - and ili-
- Most common responses:
- um- (class 1 or 3)
- u- (class 1a or 11)
- A likely explanation for um-s:
- Most clan names and other ethnonyms follow an irregular 1/sg. $\rightarrow 6 /$ pl. paradigm
- ex: um-Xhosa \rightarrow ama-Xhosa
'Xhosa person/people'

Why forced choice?

- "Other" responses cloud interpretation
- Participants must decide between two given forms, with no "other" options

Experiment design

- Given a singular form, select one of two possible plural forms
- Just one block (all 9/sg. \rightarrow 10/pl.)
- 60 trials
- 30 long roots
- 30 short roots

Participants

- Native speakers of Xhosa in South Africa
- 8 in-person via Superlab (3 thrown out due to interference during testing)
- 9 online via Moodle online survey - 34 logins, 9 complete responses

Results

- Both online and in-person, participants showed knowledge of the length-based alternation
- The effect is more pronounced online than inperson
- Linear mixed model regressing prefix choice against root length with participant and item as random effects:
- In-person: $t=3.212, p<0.01$
- Web: $t=6.561, p<0.001$

Results: In-person

- Speakers were more likely to use izi(N)with short roots and $i i(N)$ - with long roots

Results: Web

- Speakers were more likely to use izi(N)with short roots and $\mathrm{ii}(\mathrm{N})$ - with long roots

Web vs. In-person

- Self-selection:
- All in-person participants completed the task
- Many web participants stopped part way through
- Because they lacked clear intuitions?

Summary and Conclusion

Conclusion

- The length-based alternations are not just
a historical vestige
- Speakers have some linguistic awareness of

Speakers have some linguistic awaren
length as the basis for the allomorphy

- They can extend that knowledge to the treatment of novel words; it's not lexicalized

Summary

- Xhosa speakers use root length to decide between class prefix allomorphs
- This alternation is represented in speakers' synchronic grammars

Conclusion

- Length-based allomorphy can be synchronically active even when its motivation is historical, rather than phonologically/phonetically motivated
- Bisyllabic minimality as driving factor?
- iin- ~ izin-: no difference in mora count
- Prefix usually doesn't count for minimality of stem, but seems to do so here.

Thanks!

We thank the following individuals for help with data collection:
Nhlakanipho Mahlangu
Mellesa Mcimbi Zenoyise Mpike Katie Mudd

Carl Rigney
Melissa Rudman
Olwethu Zeleni
Kimara Singh Melissa Zisengwe

Emma Huntley Ntombovuyo Ngaphu Msindisi Sam

And, for research assistance, Kelly Goldstuck
This work was supported in part by a grant from the Rhodes University Research Council
aaron.braver@ttu.edu

