(In)complete Vowel Lengthening:

Japanese Monomoraic Lengthening as Incomplete Neutralization

Aaron Braver and Shigeto Kawahara

Rutgers, The State University of New Jersey

WCCFL 31
9 February 2013
abraver@rutgers.edu
www.aaronbraver.com
kawahara@rci.rutgers.edu rci.rutgers.edu/~kawahara

\qquad

\qquad

Complete neutralization

- Complete neutralization: two underlyingly distinct segments become identical

■ Classically-cited case: German final devoicing (Trubetzkoy 1939/1969, p. 235; Bloomfield 1933/1984, pp. 218-219; Jakobson et al. 1952/1975, p. 9; Hyman 1975, pp. 29, 71-72)

- The classic picture:

Introduction

■ Japanese: bimoraic minimality (e.g., Poser 1990, Itô 1990)

- Experiment I: monomoraic noun lengthening
- Vowel length contrast: incompletely neutralized

■ Experiment II: number recitation lengthening

- Vowel length contrast: completely neutralized

■ One phonological constraint \rightarrow complete and incomplete neutralization

| A. Braver and S. Kawahara | (In)complete Vowel Lengthening | WCCFL 31 | 9 Feb 2013 |
| :--- | :--- | :--- | :--- | :--- |

Introduction Experiment I $|\mu| \geq 2$ and lengthening Experiment II Discussion

Incomplete neutralization

■ Incomplete neutralization: two underlyingly distinct segments become nearly identical

- Some small trace of the underlying distinction is manifested on the surface, in the direction of the canonical realization of the contrast
- $/ \mathrm{X} / \rightarrow\left[\mathrm{Z}^{(\alpha F)}\right] /($ Context A)
$\left.{ }^{[\alpha F}\right]$
$/ \mathrm{Y} / \rightarrow\left[\mathrm{Z}^{(\beta F)}\right] /($ Context A)
[β F]

German devoicing, redux

■ German devoicing is actually incompletely neutralizing (Port and O'Dell 1985)

■ /bat/ $\neq / \mathrm{sad} /$, even on the surface
A. Braver and S. Kawahara (In)complete Vowel Lengthening WCCFL 31 9 Feb 2013

| Introduction $\|\mu\| \geq 2$ and lengthening Experiment I Discussion |
| :--- | :--- | :--- |

Phonetic duration and phonological length

Incomplete neutralization: often small surface difference in phonetic duration
but

We know of no previously-reported cases of incompletely neutralized phonological length distinctions ${ }^{1}$

[^0]A. Braver and S. Kawahara

Commonly-cited cases of incomplete neutralization

■ German final devoicing (Port and O’Dell 1985, Mitleb 1981a,b, Dinnsen and Garcia-Zamor 1971, though see Fourakis and Iverson 1984)

■ Catalan final devoicing (Dinnsen and Charles-Luce 1984)

- Polish final devoicing (Slowiaczek and Dinnsen 1985, Slowiaczek and Szymanska 1989)
- Russian final devoicing (Dmitrieva 2005)

■ Dutch final devoicing (Warner et al. 2004, though see Warner et al. 2006)
A. Braver and S. Kawahara (In)complete Vowel Lengthening WCCFL 31 9 Feb 2013
Introduction Experiment I Experiment II Discussion

Questions
(1) Can we expand the typology of incomplete neutralization to include new types of phonological contrasts?
(2) When we say that a contrast is (in)completely neutralized, what is the scope of that claim?

Japanese prefers minimally bimoraic words (Poser

1990, Itô 1990)

Nicknames map to bimoraic units

Name	Possible Nickname		Impossible Nickname	
yumiko	(yumi) $_{\text {Ft }}$	-chaN	* $(\mathrm{yu})_{\mathrm{Ft}}$	-chaN (1 mora)
megumi	$(\mathrm{megu})_{\mathrm{Ft}}$	-chaN	${ }^{*}(\mathrm{me})_{\mathrm{Ft}}$	-chaN (1 mora)
keiko	$(\mathrm{kei})_{\mathrm{Ft}}$	-chaN	*(ke) $)_{\text {Ft }}$	-chaN (1 mora)
se	$(\text { see })_{\mathrm{Ft}}$	-chaN	*(se) $)_{\mathrm{Ft}}$	-chaN (1 mora)

ntroduction $|\mu|>2$ and lengthening \quad Experiment $\|$ Discussion

Monomoraic noun lengthening

Nouns without case particles

Case particles can be dropped in colloquial speech
(1) a. me-ga akai-yo
b. me-Ø akai-yo
'(Your) eyes are red'
(2) a. te-o aratta?
b. te-Ø aratta?
'(Did you) wash (your) hands?'

[^1]
Monomoraic noun lengthening

Nouns with case particles

- Japanese has monomoraic nouns (e.g., $k i$ 'tree')
- A case particle (e.g., ga, ' ${ }^{\prime}$ ' ${ }^{\prime}$) can provide the second mora

$\begin{array}{lllll}\text { A. Braver and S. Kawahara } & \text { (In)complete Vowel Lengthening } & \text { WCCFL } 31 & 9 \text { Feb 2013 }\end{array}$

| ntroduction $\|\mu\| \geq 2$ and lengthening | Experiment I Experiment II Discussion |
| :--- | :--- | :--- |

Monomoraic noun lengthening

Nouns without case particles
Monomoraic nouns without particles undergo lengthening of 40-50\% (Mori 2002)

Monomoraic noun lengthening

Nouns without case particles
...But:

- Japanese bimoraic syllables are generally $66-80 \%$ longer than monomoraic syllables (Beckman 1982, Hoequist 1983)
- Why only $40-50 \%$ longer, then?
- Mori (2002): to preserve the length contrast
Introduction Experiment | $|\mu| \geq 2$ and lengthening Experiment II Discussion

What would it look like?

Monomoraic lengthening as complete vs. incomplete neutralization

Vowel duration if neutralization is complete

Vowel duration if neutralization is incomplete

Short

Long

Monomoraic lengthening as incomplete neutralization

Incomplete neutralization: some small trace of an underlying distinction remains on the surface

Does a trace of the underlying 'shortness' remain in lengthened nouns?
A. Braver and S. Kawahara (In)complete Vowel Lengthening (14)
Introduction $||\mu|>2$ and lengthening Experiment I Experiment II Discussion

Motivation for Experiment I

- Two subclaims to prove incomplete neutralization:
- lengthened nouns > short nouns (Mori 2002, but for only two nouns)
- long nouns > lengthened nouns
- Never shown for nouns with identical segmental content

■ Most cases of incomplete neutralization: devoicing, feature/segment-level contrasts
■ Itô (1990): Japanese bimoraicity requirement is 'deep' or 'early' in phonology

Stimuli

－ 11 sets of three sentences（ $\mathrm{n}=33$ ）
－Monomoraic noun，with a particle（＇short／prt＇）
－Monomoraic noun，without a particle（＇short／Ø＇）
－Underlyingly long noun（＇long＇）
■ Nouns within each set had the same segmental content
－Accent was matched in 9 sets
－Standard Japanese orthography
－Long vowels indicated by either（a）kanji alone，or（b）kana with a length mark（ -$)^{2}$
－See appendix
2 Some＇long＇morphemes written with kanji，had they been written in hiragana，would have been written as diphthongs．They are generally pronounced as long monophthongs，in spite of this orthographic convention（see Vance 2008，pp．63－68，for discussion）．
$\begin{array}{lllll}\text { A．Braver and S．Kawahara } & \text {（In）complete Vowel Lengthening } & \text { WCCFL } 31 & 9 \text { Feb } 2013\end{array}$

Participants and recording information

－Participants

－ 7 native speakers of Japanese（one excluded）
－Undergrad and grad students at Japanese universities
－Paid $¥ 500(\approx \$ 5)$
■ Recording details
－Sound－attenuated room at International Christian University （Tokyo，Japan）
－TASCAM DR－40 recorder

Sample stimuli sets

（3）
a．short／prt
麩 が 素晴らしい
fu ga subarashi－i gluten NOM excellent－pres
b．short／Ø
麩 素晴らしい
fu \varnothing subarashi－i gluten \varnothing excellent－pres
c．long
封がとれた
fuu ga tore－ta
seal NOM come．off－pst
（4）a．short／prt
血がでた
chi ga de－ta
blood NOM going．out－PST
b．short／\varnothing
血 でた
chi \varnothing de－ta
blood Ø going．out－PST
c．long
$\begin{array}{lll}\text { 地位 } & \text { が } & \text { ある } \\ \text { chii } & \text { ga } & \text { aru }\end{array}$
social．status NOM have
WCCFL $31 \quad 9$ Feb 2013
Introduction $|\mu|>2$ and lengthening Experiment I Experiment II Discussion

Procedure

Speakers practiced all items onceRead all 33 sentences in random order－Speakers were instructed not to pause mid－sentence
3 Repeated 9 more times，re－randomized each time

Acoustic measurements

■ Vowel duration

| A. Braver and S. Kawahara | (In)complete Vowel Lengthening |
| :--- | :--- | :--- | :--- |

Introduction $|\mu| \geq 2$ and lengthening Experiment I Experiment II Discussion

A three-way distinction
Vowel duration

A. Braver and S. Kawahara

Statistical analysis

Linear mixed model (via lme4 package in R).

■ Vowel duration was regressed against condition (short, lengthened, underlyingly long) as a fixed factor, and speaker and item as random factors

- Planned contrasts (treatment coding): short vs. lengthened nouns, and lengthened vs. underlyingly long nouns.

| A. Braver and S. Kawahara (In)complete Vowel Lengthening | WCCFL 31 | 9 Feb 2013 |
| :--- | :--- | :--- | :--- |

Introduction Experiment I $|\mu| \geq 2$ and lengthening Experiment II Discussion

Results

Statistical significance

Condition has a significant effect on measured vowel duration ${ }^{3,4}$

■ Short/prt vs. short/Ø: mean difference $-45.65 \mathrm{~ms}, t=-8.018$, $p<0.001$
■ Long vs. short/ \varnothing : mean difference $26.55 \mathrm{~ms}, t=1.369, p<0.05$
p values estimated by Markov Chain Monte Carlo method, via languageR package in R.
4 A t-test confirms the significance fo the long vs. short/Ø vowel length distinction $t(1278.99)=-14.90, p<0.001$
$\begin{array}{llll}\text { A. Braver and S. Kawahara } & \text { (In)complete Vowel Lengthening } & \text { WCCFL } 31 & 9 \text { Feb } 2013\end{array}$

| A. Braver and S. Kawahara | (In)complete Vowel Lengthening | WCCFL 31 | 9 Feb 2013 |
| :--- | :--- | :--- | :--- | :--- |

The pattern holds for all sets

Introduction $|\mu| \geq 2$ and lengthening Experiment I Experiment II Discussion

Conclusions

Monomoraic nouns lengthen to meet the bimoraicity requirement

Vowel length is incompletely neutralized in this context

And for all 6 speakers

Implications for incomplete neutralization

- Most cases of incomplete neutralization are based on final devoicing
■ Languages can incompletely neutralize a very different type of contrast (phonological length)
■ A truly phonological process that leads to a case of incomplete neutralization which can't be relegated to phonetic implementation

Experiment II

- Is the vowel length contrast incompletely neutralized everywhere in Japanese?
- Lengthening in a number recitation context, motivated by bimoraic minimality

A. Braver and S. Kawahara

(In)complete Vowel Lengthening
WCCFL $31 \quad 9$ Feb 2013

Introduction $\|\mu\| \geq 2$ and lengthening	Experiment I Experiment II	Discussion

Stimuli

Main stimuli sets

- 2 sets of three phrases
- Monomoraic number, non-lengthening context ('teens')

■ (juu-ni) $)_{\mathrm{Ft}}$ ban kara ten-two(=12) num from
■ Monomoraic number, lengthening context ('recitation')
■ ichi $(\underline{\text { ni }})_{\mathrm{Ft}}$ san roku one two three six
■ Long noun, with identical segmental content ('long')
■ ano (nii) $)_{\mathrm{Ft}}$ san tachi those older.brother HON PL

- Target words shared segmental content, modulo vowel length
- Frames in matched in mora count

Telephone number recitation (Itô 1990)

- Each digit in a phone number stands as its own prosodic word
- If the digit has more than one mora, it gets used with no modification
- 3: saN (μ)
- If the digit has a bimoraic allomorph, that one gets used
- 4: yoN ($\mu \mu$), *shi (μ)

■ If a bimoraic allomorph does not exist, the digit is lengthened

- 5: /go/ \rightarrow [goo], *[go]

A sample phone number							
4	5	9	-	3	2	8	4
yoN	goo	kyuu	(no)	saN	nii	hachi	yoN
*shi	*go				*ni		*shi

$\begin{array}{lllll}\text { A. Braver and S. Kawahara } & \text { (In)complete Vowel Lengthening } & \text { WCCFL } 31 & 9 \text { Feb 2013 } & 30\end{array}$

ntroduction $\|\mu\| \geq 2$ and lengthening	Experiment I	Experiment II

Stimuli

Additional stimuli sets

- 'Bimoraic' set (expectation: no lengthening)
- san ' 3 ' in 'teens' and 'recitation' contexts

■ 'Alternators' (expectation: bimoraic allomorph)

- shi/ yon ' 4 ' and $k u / k y u u$ ' 9 ' in 'recitation' context

Participants, recording information, procedure, and statistics

All details as in Experiment I, except:

- 12 native speakers of Japanese (different from Experiment I)
- Each speaker read all items in random order 7 times
A. Braver and S. Kawahara (In)complete Vowel Lengthening \quad WCCFL $31 \quad 9$ Feb 2013
Introduction $|\mu| \geq 2$ and lengthening Experiment I Experiment II Discussion

Results

Statistical significance

- 'recitation' (lengthened) vowels were significantly longer than 'teens' (short) vowels

■ mean difference: 75.92 ms
■ $t=10.586$

- $p<0.001$
- 'recitation' (lengthened) vowels are not significantly different from 'long' vowels

■ mean difference: 13.85 ms
■ $t=1.90$

- n.s.

Vowel duration

Main sets
Mean Vowel Duration
Averaged over all speakers, items, and repetitions

Lengthened vs. long and the bimoraic set

- Lengthened 'recitation' vowels were slightly longer than 'long' numbers (mean difference: $13.85 \mathrm{~ms}, t=1.90$, n.s.)
- Bimoraic set: comparable difference
- 'recitation' vowels were 15.92 ms longer than 'teens' vowels
- The 'recitation' condition may induce $\approx 15 \mathrm{~ms}$ of lengthening beyond bimoraic lengthening

Alternator sets

Discussion

Experiment II

- All speakers produced all tokens of all items using the bimoraic allomorph (i.e., yoN for ' 4 ' and kyuu for ' 9 ')

| A. Braver and S. Kawahara (In)complete Vowel Lengthening \quad WCCFL 31 | 9 Feb 2013 |
| :--- | :--- | :--- | :--- |

Summary

- Experiment I: short/long vowel length contrast is incompletely neutralized in monomoraic noun lengthening
- Experiment II: short/long vowel length contrast appears completely neutralized in number recitation
- Duration-based length contrasts can be incompletely neutralized (Experiment I)
- A given contrast can be incompletely neutralized by one phonological process, but completely neutralized by a related process in the same language (Experiments I and II)

Where does the difference come from?

A working hypothesis..

- Lexical vs. post-lexical levels (Kiparsky 1982a,b, 1985, Mohanan 1982, Kaisse and Shaw 1985)
- Monomoraic noun lengthening is conditioned by syntactic particles dropping (\rightarrow post-lexical)
- Allomorph selection in number recitation is affected by bimoraicity $(\rightarrow$ lexical)

■ Structure preservation (Kiparsky 1982a): lexical processes cannot introduce new segments

- The short/long vowel length contrast appears to be completely neutralized in number recitation
- This lengthening is due to the same bimoraicity requirement as in Experiment I
- Non-significant difference between 'recitation' and 'long' vowels
- Bimoraicity-lengthening $+\approx 15 \mathrm{~ms}$ additional lengthening
A. Braver and S. Kawahara (In)complete Vowel Lengthening \quad WCCFL $31 \quad 9$ Feb 2013 (38)

ntroduction $\|\mu\| \geq 2$ and lengthening	Experiment I

Hypothesis

Conclusion

- Hypothesis: Only post-lexical processes can introduce incompletely neutralized contrasts
- Preliminary typological support:
- Devoicing in Russian is incomplete (Dmitrieva et al. 2010), and occurs across word-boundaries (Padgett 2011)
- Flapping in American English is incomplete (Braver under review, Herd et al. 2010) and occurs across word-boundaries
AND
- Manner neutralization in Korean codas is complete (Kim and Jongman 1996), and lexical (Kang 1993)

A. Braver and S. Kawahara	(In)complete Vowel Lengthening	WCCFL 31	9 Feb 2013

Thanks!

Thanks are due to the participants in our experiments, as well as the undergraduate lab assistants at the Rutgers Phonetics Laboratory who participated in this research: Natalie Dresher, Christopher Kish, Sarah Korostoff, Megan Moran, Melanie Pangilinan, and Jessica Trombetta. We received helpful comments from Bruce Tesar and Kristen Syrett. We also thank Professors Tomo Yoshida and Shin-ichiroo Sano for their help in making arrangements for recording at International Christian University, and the audience at the May 2012 meeting of the Tokyo Circle of Phonologists for their helpful comments. This project was supported in part by a JICUF Visiting Scholarship fund to the second author.

■ The typology of processes leading to incomplete neutralization must include those that affect contrasts of length or prosodic structure

- A given phonological contrast within a language can be completely and incompletely neutralized by different processes

| A. Braver and S. Kawahara (In)complete Vowel Lengthening | WCCFL 31 | 9 Feb 2013 |
| :--- | :--- | :--- | :--- |

References I

Beckman, Mary (1982). Segmental Duration and the 'Mora' in fapanese. Phonetica 39:113-135.
Bloomfield, Leonard (1933/1984). Language. University of Chicago Press, Chicago.
Braver, Aaron (2011). Incomplete Neutralization in American English Flapping: A Production Study. In Proceedings of the 34th Annual Penn Linguistics Colloquium, volume 17 of University of Pennsylvania Working Papers in Linguistics. Penn Linguistics Club. http://repository.upenn.edu/pwpl/ vol17/iss1/5/.
Braver, Aaron (to appear). Perception of Incompletely Neutralized /d/ and /t/ Flaps in American English. In Proceedings of the 42nd Annual Meeting of the North Eastern Linguistic Society. UMass GLSA
Braver, Aaron (under review). Imperceptible Incomplete Neutralization: Production, Identification, and Discrimination of /d/ and /t/ Flaps in American English.
Davidson, Lisa (2006). Phonology, Phonetics, or Frequency: Influences on the Production of Non-Native Sequences. Journal of Phonetics 34:104-137.
Dinnsen, Daniel (1985). A Re-Examination of Phonological Neutralization. Journal of Linguistics 21(2):265-279.
Dinnsen, Daniel and Charles-Luce, Jan (1984). Phonological Neutralization, Phonetic Implementation and Individual Differences. Journal of Phonetics 12:49-60.
Dinnsen, Daniel A. and Garcia-Zamor, Marie (1971). The three degrees of vowel length in German. Papers in Linguistics 4:111-126.

References II

Dmitrieva, Olga (2005). Incomplete Neutralization in Russian Final Devoicing: Acoustic Evidence from Native Speakers and Second Language Learners. Master's Thesis, University of Kansas, Lawrence, Kansas.
Dmitrieva, Olga; Jongman, Allard; and Sereno, Joan (2010). Phonological Neutralization by Native and NonNative Speakers: The Case of Russian Final Devoicing. Journal of Phonetics 38(2):483-492.
Fougeron, Cécile and Steriade, Donca (1997). Does Deletion of French Schwa Lead to Neutralization of Lexical Distinctions? In Proceedings of the 5th European Conference on Speech Communication and Technology, volume 7, pp. 943-946.
Fourakis, Marios and Iverson, Gregory (1984). On the 'Incomplete Neutralization' of German Final Obstruents. Phonetica 41:140-149.
Fourakis, Marios and Port, Robert (1986). Stop Epenthesis in English. Journal of Phonetics 14(2):197-221 Gerfen, Chip (2002). Andalusian Codas. Probus 14:247-277.
Gordon, Matthew and Munro, Pamela (2007). A Phonetic Study of Final Vowel Lengthening in Chickasaw. International Journal of American Linguistics 7(3):293-330
Gouskova, Maria and Hall, Nancy (2009). Acoustics of Unstressable Vowels in Lebanese Arabic. In Steve Parker (ed.) Phonological Argumentation: Essays on Evidence and Motivation. Equinox Books.
Hayes, Bruce (1995). Metrical Stress Theory: Principles and Case Studies. University of Chicago Press.
Herd, Wendy; Jongman, Allard; and Sereno, Joan (2010). An acoustic and perceptual analysis of $/ t /$ and $/ \mathrm{d} /$ flaps in American English. Journal of Phonetics 38:504-516.
A. Braver and S. Kawahara
(In)complete Vowel Lengthening
WCCFL 31
(45)

References IV

Labov, William; Jaeger, Malcah; and Steiner, Richard (1972). A Quantitative Study of Language Change in Progress. Technical Report NSF-GS-3287, University of Pennsylvania, US Regional Survey.
Mitleb, Fares M. (1981a). Segmental and non-segmental structure in phonetics: Evidence from foreign accent. Doctoral Dissertation, Indiana University, Bloomington.
Mitleb, Fares M. (1981b). Temporal correlates of 'voicing' and its neutralization in German. Research in Phonetics 2:173-192.
Mohanan, K.P. (1982). Lexical Phonology. Doctoral Dissertation, Massachusetts Institute of Technology. Mori, Yoko (2002). Lengthening of Japanese Monomoraic Nouns. Journal of Phonetics 30(4):689-708.
Padgett, Jaye (2011). The Role of Prosody in Russian Voicing. In Toni Borowsky, Shigeto Kawahara, Takahito Shinya, and Mariko Sugahara (eds.) Prosody Matters: Essays in Honor of Elisabeth Selkirk, pp. 181-207. Equinox.
Port, Robert and O'Dell, Michael (1985). Neutralization and Syllable-Final Voicing in German. Journal of Phonetics 13:455-471.
Poser, William (1990). Evidence for Foot Structure in fapanese. Language 66:78-105.
Rudin, Catherine (1980). Phonetic Evidence for a Phonological Rule: g-Deletion in Turkish. Research in Phonetics 1:217-232.
Slowiaczek, Louisa M. and Dinnsen, Daniel (1985). On the Neutralizing Status of Polish Word-Final Devoicing. Journal of Phonetics 13:325-341.

References III

Hoequist, Charles E. (1983). Durational Correlates of Linguistic Rhythm Categories. Phonetica 40:19-31. Hyman, Larry (1975). Phonology: Theory and Analysis. Holt, Rinehart and Winston, New York.
Itô, Junko (1990). Prosodic Minimality in Fapanese. In Michael Ziolkowski, Manual Noske, and Karen Deaton (eds.) Proceedings of Chicago Linguistic Society 26: Parasession on the Syllable in Phonetics and Phonology, pp. 213-239. Chicago Linguistic Society, Chicago.
Jakobson, Roman; Fant, Gunnar; and Halle, Morris (1952/1975). Preliminaries to Speech Analysis: The Distinctive Features and Their Correlates. MIT Press, Cambridge.
Kaisse, Ellen M. and Shaw, Patricia A. (1985). On the theory of Lexical Phonology. Phonology Yearbook 2:1-30.

Kang, Ongmi (1993). Prosodic Word-Level Rules in Korean. In fapanese/Korean Linguistics, volume 2, pp. 147-163. CSLI.
Kim, Hyunsoon and Jongman, Allard (1996). Acoustic and Perceptual Evidence for Complete Neutralization of Manner of Articulation in Korean. Journal of Phonetics pp. 295-312.
Kiparsky, Paul (1982a). From Cyclic Phonology to Lexical Phonology. In Harry van der Hulst and Norval Smith (eds.) The Structure of Phonological Representations, volume 1, pp. 131-175. Foris, Dordrecht.
Kiparsky, Paul (1982b). Lexical Phonology and Morphology. In Ik-Hwan Lee (ed.) Linguistics in the Morning Calm, pp. 3-91. Hanshin.
Kiparsky, Paul (1985). Some consequences of Lexical Phonology. Phonology Yearbook 2:85-138.
$\begin{array}{lllll}\text { A. Braver and S. Kawahara } & \text { (In)complete Vowel Lengthening } & \text { WCCFL } 31 & 9 \text { Feb } 2013\end{array}$

Introduction $\|\mu\| \geq 2$ and lengthening	Experiment I	Experiment II	Discussion

References V

Slowiaczek, Louisa M. and Szymanska, Helena (1989). Perception of Word-Final Devoicing in Polish. Journal of Phonetics 17:205-212
Trubetzkoy, Nikolai S. (1939/1969). Grundzüge der Phonologie [Principles of phonology]. Vandenhoeck and Ruprecht [Translated by Christiane A. M. Baltaxe 1969, University of California Press], Güttingen.
Vance, Timothy J. (2008). The Sounds of Fapanese. Cambridge University Press, Cambridge.
Warner, Natasha; Good, Erin; Jongman, Allard; and Sereno, Joan (2006). Orthographic vs. Morphological Incomplete Neutralization Effects. Journal of Phonetics 34(2):285-293.
Warner, Natasha; Jongman, Allard; Sereno, Joan; and Kemps, Rachèl (2004). Incomplete Neutralization and other Sub-Phonemic Durational Differences in Production and Perception: Evidence from Dutch. Journal of Phonetics 32:251-276

Yu, Alan C. L. (2007). Understanding Near Mergers: The Case of Morphological Tone in Cantonese. Phonology 24:187-214.

Appendix：Experiment I Stimuli，Part I

Japanese orthography	Transcription	Gloss
木が倒れた。	ki ga taore－ta	tree NOM fall－PST
木倒れた。	ki taore－ta	tree Nom fall－PST
キー見つかった。	kii mitsukat－ta	key find－pst
菜が煮えた。	na ga nie－ta	vegetable NOM cook－PST
菜煮えた。	na nie－ta	vegetable cook－Pst
「なー」と言われた。	＂naa＂to iw－are－ta	＂DISC＂COMP Say－Psv－PsT
火が消えた。	hi ga kie－ta	fire nom go．out－PST
火消えた。	hi kie－ta	fire go．out－PST
「ひー」と叫んだ。	＂hii＂to saken－da	＂interject．＂comp shout－pst
酢がない。 酢ない。 スーが見つからない。	su ga nai	vinegar NOM NEG
	su nai	vinegar neg
	suu ga mitsukar－anai	Sue nom find neg

A．Braver and S．Kawahara
（In）complete Vowel Lengthening
WCCFL 31

Introduction $\|\mu\| \geq 2$ and lengthening	Experiment I	Experiment II	Discussion

Appendix：Experiment I Stimuli，Part III

Japanese orthography	Transcription	Gloss
根がぬけた。	ne ga nuke－ta	root NOM pull．out－PST
根ぬけた。	ne nuke－ta 「ねー」と言われた。 ＂nee＂to iw－are－ta	＂DISC＂comp sall．out－PST
素晴らしい。		
素晴らしい。	fu ga subarashi－i	gluten nOM excellent－PRES
封がとれた。	fu subarashi－i	gluten excellent－PRES
fuu ga tore－ta	seal NOM come．off－PST	
目が腫れた。	me ga hare－ta	eye NOM swell－PST
目腫れた。	me hare－ta	eye NOM swell－PST
「メー」と鳴いた	＂mee＂to nai－ta	＂［sheep sound］＂comp make．sound PST

Appendix：Experiment I Stimuli，Part II

Japanese orthography	Transcription	Gloss
背がのびた。	se ga nobi－ta	height nom stretch－pst
背のびた。	se nobi－ta	height stretch－psT
正の整数。	sei no seisuu	positive MOD integer
血がでた。	chi ga de－ta	blood NOM going．out－PST
血でた。	chi de－ta	blood going．out－PST
地位がある。	chii ga aru	social．status nом have
手がしびれた。	te ga shibire－ta	hand пом become．numb－PST
手しびれた。	te shibire－ta	hand become．numb－pst
低の長さ。	tei no nagasa	base．of．shape mор length
戸が壊れた。	to ga koware－ta	door NOM break－PST
戸壊れた。	to koware－ta	door break－PST
「とー」と叫んだ。	＂too＂to saken－da	＂interject．＂COMP shout－pst （continued．．．）

Appendix：Experiment II Stimuli

Set	Japanese orthography	Transcription	Gloss
Main（ni）	$\begin{aligned} & 12 \text { 番から } \\ & 1236 \\ & \text { あのにいさんたち } \end{aligned}$	juu－ni ban kara ichi ni san roku ano nii－san tachi	ten－two number from one two three six those older brother－HON PL
Main（go）	$\begin{aligned} & 15 \text { 番から } \\ & 1578 \\ & \text { あの豪くんたち } \end{aligned}$	juu－go ban kara ichi go nana hachi ano gou kun tachi	ten－five NUMBER from one five seven eight those（name）name．suffix pl
Bimoraic（san）	$\begin{aligned} & 13 \text { 番から } \\ & 1364 \end{aligned}$	juu－san ban kara ichi san roku shi／yon	ten－three number from one three six four
Alternators	$\begin{aligned} & 1432 \\ & 1980 \end{aligned}$	ichi shi／yon san ni ichi ku／kyuu hachi zero	one four three two one nine eight zero

[^0]: 1 See discussion of trochaic lengthening in Hayes (1995) and final lengthening in Chickasaw in Gordon and Munro (2007), which suggest that vowel lengthening might be an area rich for investigation.

[^1]: Examples from Mori (2002)

