Neutralization in Xhosa's 'unnatural' labial palatalization

Aaron Braver Texas Tech University

LSA 2019

Neutralization

- Neutralization is when a contrast is reduced
- Complete neutralization: two contrasting segments become exactly identical
- Incomplete neutralization: contrast is reduced, but a trace of the underlying contrast remains

on Braver LSA 201

1

0

Incomplete neutralization

- Classic example: German final devoicing
 - Rad 'wheel' vs. Rat 'advice' or 'council'
 - Early view: they're homophones
 - But: they are acoustically distinct
 - Duration of preceding vowel, closure duration, voicing in closure, among other differences (Port and O'Dell 1985)

Aaron Braver LSA 2019

Selected other proposed incomplete neutralizations

- Final devoicing: Russian (Dmitrieva 2005), Polish (Jassem and Richter 1989), Dutch (Warner 2004), Catalan (Dinnsen and Charles-Luce 1984)
- Monomoraic vowel lengthening in Japanese (Braver 2019, Braver and Kawahara 2016)
- S-aspiration in Eastern Andalusian Spanish (Gerfen 2002, Bishop 2007)
- Intrusive stop in English (Ohala 1974, Kilpatrick et al
- Cantonese tone (Yu 2007)

Complete neutralization

- Most contrasts subjected to acoustic analysis appear to be incomplete
- Dinnsen (1985) calls complete neutralization "not well established" and "problematic"
- One counterexample: Korean manner neutralization (Kim and Jongman 1996)

5

Question:

Are some processes more likely to result in incomplete neutralization than others?

- Phonetically "natural" vs. "unnatural"?
 - Unnatural processes may be less likely to refer directly to phonetic specifications

Question:

Are some processes more likely to result in incomplete neutralization than others?

- Productive vs. lexical?
 - If incomplete neutralization is the result of a process, perhaps residue of the underlying form exists in a way that it doesn't for lexically stored exceptions

Question:

Are some processes more likely to result in incomplete neutralization than others?

- Based on the feature being neutralized?
 - Incomplete neutralization is frequently reported in final devoicing (German, Dutch, Polish, Russian, Catalan...)

Aaron Braver

SA 2019

In this talk, I will...

- Describe Xhosa's "unnatural" labial palatalization
- Show that some, but not all, speakers represent this pattern as a part of regular phonology
- Propose labial palatalization as a potential case of complete neutralization
- Suggest that "unnatural" processes may be no more likely to be incompletely neutralized

ron Braver

Labial palatalization in Xhosa

aron Braver

10

LSA 2019

(isi-)Xhosa

• [isí-||hòsà]

11

- Southern Bantu (Nguni)
- South Africa: mainly in Eastern Cape, but also in most urban centers around South Africa

Labial palatalization

12

 Labials shift to their nearest palatal counterpart, with some additional disparities, e.g. aspiration (McLaren 1942, Doke 1954)

$$\begin{array}{llll} [p'] \rightarrow & [tf] & p \rightarrow tsh \\ [p^h] \rightarrow & [tf^h] & ph \rightarrow tsh \\ [6] \rightarrow & [c'] & b \rightarrow ty \\ [b] \rightarrow & [d\overline{3}] & bh \rightarrow j \\ [m] \rightarrow & [n] & m \rightarrow ny \\ [mb] \rightarrow & [^nd\overline{3}] & mb \rightarrow nj \end{array}$$

Labial palatalization

• Triggered by [-w-] passive suffix

13

 $\begin{array}{ccc} \bullet \text{ Passive formation with -w- (non-labials)} \\ & uku-fu^n\underline{d}\text{-a} & uku-fu^n\underline{d}\text{-w-a} \\ & \text{inf-study-fv} & \text{inf-study-pass-fv} \end{array}$

Labial palatalization

• Passive with labial palatalization $(m \rightarrow p)$ uku-lum-a uku-lup-w-a

inf-bite-fv inf-bite-pass-fv

• Passive with labial palatalization $(6 \rightarrow c')$

uku-k̄x'o6-a uku-k̄x'oc'-w-a inf-peep-fv inf-peep-pass-fv

in Braver LSA 2019

"Natural" palatalization: typological tendencies

• Triggered by high front vocoids

• Applies to coronals (and/or dorsals) but not labials

ron Braver LSA 2019

14 15

"Unnatural" palatalization in Xhosa

- Triggered by [-w-], but not by high front vocoids ([i])
 uku-kx'o6-is-a (*uku-kx'oc'-is-a)
 inf-peep-caus-fv
- Applies to labials, but not to coronals
 uku-bo<u>n</u>-w-a
 inf-see-caus-fv

Aaron Braver LSA 20

Representation of unnatural patterns

Two possible views:

- Unnatural patterns can be learned as a regular, productive part of phonology (e.g. Reiss 2017).
- Phonological patterns are restricted by phonetic naturalness (e.g. Ohala 1990, Steriade 1997, 2008).
 Apparently unnatural patterns may be lexically stored and less productive.

n Braver LSA 2019

16 17

Is labial palatalization productive in Xhosa?

Aaron Braver

LSA 2019

Assessing productivity

- A wug test (Berko 1958) can detect productivity since nonce words cannot have lexically stored passive/palatalized forms
- Predictions of hypotheses:
 - Productive phonology: speakers will palatalize both real and nonce words productively
 - Lexical: speakers will palatalize real words, but not productively with nonce words

19

18

Stimuli

- 40 nonce verb roots with CVC structure
- Final C:
 - \bullet Half: palatalization targets (mb [mb] or m [m])

Half: underlying palatals (nj [nd͡ʒ]or ny [n])

40 filler real verb roots

ArsvePays Bennett (under review)

LSA 2019

20

Each root was shown in the frame iya-___-a (sm.9 pres) in Xhosa orthography
Participants read this form, then were asked to fill in the frame iya-___-w-a (sm.9 pass) aloud

ukwenziwa

iya__

• 24 participants

1 1

ukwenza

iyafamba \rightarrow

20

21

22 23

24

Derived vs. underlying palatals • Is the labial palatalization process completely or incompletely neutralizing? Aaron Braver LSA 2019 26

26 27

Acoustic measurements

• 6 time points

$$ija-\frac{1}{4}a^{m}b-\underline{w-a}_{\text{"V2"}}$$

- V1: midpoint, 10ms before offset, offset
- V2: onset, 10ms after onset, midpoint
- Key acoustic cue: F2 as a cue to palatal-ness

Braver LSA 2019

28

29

Time point	Derived F2 mean	Underlying F2 mean	Coefficient of derived/underlying	t	P
VI midpoint	2140.03	1993.39	-148.81	-1.07	ns
VI offset - 10	1804.64	1810.38	2.28	0.04	ns
VI offset	1820.11	1861.66	19.86	0.36	ns
V2 onset	1727.35	1780.28	11.28	0.15	ns
V2 onset + 10	1550.21	1447.45	127.32	1.34	ns
V2 midpoint	2192.39	2227.48	-37.631	-0.44	ns

Speaker 1

2550

Speaker 1

2550

1550

1550

Speaker 2

Speaker 2

2500

Speaker 2

2500

Aaron Braver

Undergoers

Undergoers

Undergoers

7/20/20

Discussion

- No apparent difference in F2 in derived vs. underlying palatals in pooled or individual results
- Appears to be a completely neutralized contrast
- Speakers' complete vs. incomplete neutralization is not conditioned by degree of palatalization productivity

Aaron Braver

SA 2019

Discussion

- Despite ling 101 canon, complete neutralization is rarely found acoustically
- "Unnatural" patterns can, apparently, be completely neutralized
- Loci of neutralization may play a role in complete/incomplete
 - Voicing contrasts tend to incomplete
 - Korean manner neutralization is complete (Kim and Jongman 1996)

Aaron Braver

LSA 2019

36

37

Thank you

Thanks to Will Bennett, Brian Smith, and the audience of AMP 2018 for helpful discussion of this project.

Aaron Braver

LSA 2019